Temperature Dependences of ⁶⁹Ga and ⁸¹Br NQR Frequencies in [R₄N]₂Ga₂Br₆ (R=CH₃ and C₂H₅)

Hideta Ishihara,* Koji Yamada,† and Tsutomu Okuda†

Department of Chemistry, Faculty of Education, Saga University, Honjo-machi, Saga 840

†Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730

(Received June 7, 1986)

Synopsis. Temperature dependences of 69 Ga and 81 Br NQR frequencies showed that phase transitions take place at 98 and 137 K in $[(CH_3)_4N]_2Ga_2Br_6$ and that the C_3 reorientation of the GaBr₃ group occurs in $[(C_2H_5)_4N]_2Ga_2Br_6$ around room temperature.

Unusual temperature dependences of 69 Ga and 81 Br nuclear quadrupole resonance (NQR) frequencies were observed for $[R_4N]_2Ga_2Br_6$ (R=CH₃ and C₂H₅) in a study of bond character in Ga(II) compounds. ¹¹ Although no crystal structure analysis of these two compounds has been reported as yet, we expect that the ethane-like $Ga_2Br_6^{2-}$ ions exist in both crystals, and that the cations are situated on the extension of the Ga-Ga bond of the $Ga_2Br_6^{2-}$ ion in a similar manner to the crystal of $[(CH_3)_4N]_2Ga_2Cl_6$. On the basis of these expected crystal structures, we examined a possibility that unusual temperature dependences of 69 Ga and 81 Br NQR frequencies can be attributed to reorientations of the cation and/or anion.

Experimental

The compounds were prepared according to Ref. 3. NQR spectra of ⁸¹Br and ⁶⁹Ga were recorded on a pen-recorder using a superregenerative oscillator with Zeeman modulation. The temperature dependence of the NQR frequencies was measured in the temperature range between 77 and ca. 300 K by immersing the sample into a bath of cooled petroleum-ether or heated silicone oil. The sample-temperature was measured using a copper-constantan thermocouple whose e.m.f. was displayed on a digital multimeter. Broadline ¹H NMR spectra were observed at 60 MHz using a JEOL JNM-FW 60 spectrometer in a temperature range between 300 and 110 K and at 77 K.

Results and Discussion

Figure 1 shows the temperature dependence of ⁶⁹Ga NQR frequencies in [(CH₃)₄N]₂Ga₂Br₆. Three weak ⁶⁹Ga NQR lines were observed at 77 K and intensities of these lines increased on raising the temperature to 83 K. Another resonance line appeared at 83 K. The discontinuous change of the temperature dependence took place at 98 K and four NOR lines reduced to three. On further increasing the temperature, three lines reduced to two at 137 K. Accordingly we infer that phase transitions take place at 98 and 137 K. Figure 2 shows the temperature dependence of ⁸¹Br NQR frequencies. The 81Br NQR lines observed between 77 and 137 K were too weak to measure accurately the frequency variation especially above 98 K. Five NOR lines were observed above 137 K. A differential thermal analysis (DTA) experiment was carried out above 100 K using a homemade apparatus. On heating, an endothermic peak with a small shoulder at

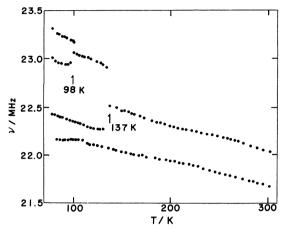


Fig. 1. Temperature dependence of ⁶⁹Ga NQR frequencies in [(CH₃)₄N]₂Ga₂Br₆.

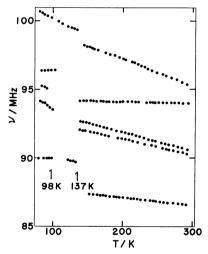


Fig. 2. Temperature dependence of ⁸¹Br NQR frequencies in [(CH₃)₄N]₂Ga₂Br₆.

ca. 135 K appeared at 137 K. Unsymmetrical DTA peaks with a long tail on the low-temperature side were reported for $(CH_3NH_3)_2PtX_6$ (X=Cl, Br, and I) and attributed to the structural phase transitions related to the rearrangement of the octahedral anions PtX_6^{2-} . In $[(CH_3)_4N]_2Ga_2Br_6$, it can be considered that the phase transitions at 98 and 137 K are related to motions of the $(CH_3)_4N^+$ ion.

The temperature dependence of the second moment M_2 of ¹H NMR spectra is shown in Fig. 3. On cooling, M_2 showed a constant value of ca. 0.5×10^{-8} T² down to ca. 140 K, while it increased rapidly below ca. 140 K and reached 20.1×10^{-8} T² at 77 K. According to the M_2

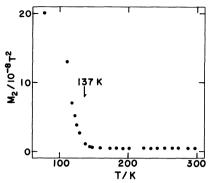


Fig. 3. Temperature dependence of the ¹H NMR second moment in [(CH₃)₄N]₂Ga₂Br₆.

calculation for (CH₃)₄NX(X=Cl, Br, and I),⁴⁾ the theoretical M_2 values in these halides are as follows: ca. 30×10^{-8} T² for the rigid lattice; ca. 11×10^{-8} T² for the rotaion of all methyl groups about C_3 axes; ca. 1×10^{-8} T^2 for the isotropic reorientation of $(CH_3)_4N^+$ ion. Accordingly, motions of the cation in [(CH₃)₄N]₂Ga₂Br₆ freeze for the most part at 77 K and the isotropic reorientation takes place above 140 K. On the other hand, a single ⁶⁹Ga NQR line was observed in [(CH₃)₄N]₂Ga₂-Cl₆ and its frequency decreased monotonously from 23.37 MHz at 77 K to 22.68 MHz at 293 K with increasing temperature. The M₂ values of ¹H NMR spectra were 0.5×10^{-8} T² above 110 K and 11.3×10^{-8} T² at 77 K. Accordingly the rotation of the methyl group takes place even at 77 K for the chloro-complex. We predict that the phase transitions in [(CH₃)₄N]₂Ga₂Br₆ at 98 and 137 K can be ascribed to the onset of the isotropic reorientation of the (CH₃)₄N⁺ ion and/or the rotation of the methyl groups. The occurrence of these motions leads to the highly symmetric structure of the crystal being consistent with the fact that the number of the ⁶⁹GaNQR lines decreased above these transition temperatures.

Figure 4 shows the temperature dependence of the ⁸¹Br and ⁶⁹Ga NQR frequencies in [(C₂H₅)₄N]₂Ga₂Br₆. The single ⁶⁹Ga NQR line observed was so weak and broad between 77 and 118 K that we could not determine the resonance frequency accurately. A similar phenomenon was also observed for the abovementioned [(CH₃)₄N]₂Ga₂Br₆, although the reason of the broadening is unknown. On heating, the resonance line became sharp and could be observed from 118 K up to 308 K, above which the resonance line disappeared. Three 81Br lines which could be seen at low temperatures disappeared at ca. 275 K when the temperature was increased. The disappearance of the NQR lines can be attributed to the onset of the C₃ reorientation of the GaBr₃ group about the Ga-Ga bond for the following reasons. If the Ga₂Br₆²⁻ ion has

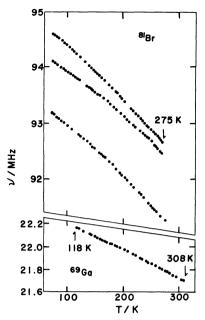


Fig. 4. Temperature dependences ^{81}Br and ^{69}Ga NQR frequencies in $[(C_2H_5)_4N]_2Ga_2Br_6$.

a structure of D_{3d} symmetry, the C_3 reorientation of the GaBr₃ group about the C_3 axis must not affect the 69 Ga NQR line. $^{6,7)}$ The Ga₂Br₆²⁻ ion in $[(C_2H_5)_4N]_2$ -Ga₂Br₆, however, has no D_{3d} symmetry because three 81 Br NQR lines were observed. Therefore, we can expect that the asymmetry parameter of the 69 Ga EFG is not zero and the principal z-axis of the EFG tensor is not parallel to the Ga-Ga bond. In addition, two bulky GaBr₃ groups should have a high barrier for rotation about the C_3 axis. Accordingly, the onset of the C_3 reorientation gives so drastic change of the EFG's at both 81 Br and 69 Ga nuclei that it is probable that this motion causes the disappearance of the NQR lines.

References

- 1) T. Okuda, N. Yoshida, M. Hiura, H. Ishihara, K. Yamada, and H. Negita, J. Mol. Struct., 96, 169 (1982).
- 2) K. L. Brown and D. Hall, J. Chem. Soc., Dalton Trans., 1973, 1843.
- 3) C. A. Evans and M. J. Taylor, J. Chem. Soc., Chem. Commun., 1969, 1201.
- 4) M. Mahajan and B. D. Nageswara Rao, J. Phys. Chem. Solids, 33, 2191 (1972).
- 5) Y. Kume, R. Ikeda, and D. Nakamura, J. Magn. Reson., 33, 331 (1979).
- 6) R. Sh. Lotfulin and G. K. Semin, *Phys. Status Solidi*, **35**, 133 (1969).
 - 7) J. L. Ragle, J. Phys. Chem., 63, 1395 (1959).